L-6 Applications Of Derivatives (Worksheet Mod 3 of 3)

Do as directed.

- 1. Find local maximum and local minimum values of the function f given by $f(x) = 3x^4 + 4x^3 12x^2 + 12$.
- 2. Find the absolute maximum and minimum values of a function f given by $f(x) = 2x^3 15x^2 + 36x + 1$ on the interval [1,5].
- 3. Find the maximum profit that a company can make, if the profit function is given by $p(x) = 41 72x 18x^2$.
- 4. At what points in the interval $[0, 2\pi]$, does the function $\sin 2x$ attain its maximum value?
- 5. Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.
- 6. Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is $\frac{8}{27}$ of the volume of the sphere.
- 7. A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening.
- 8. If the function $f(x) = 2x^3 9mx^2 + 12m^2x + 1$ attains its maximum and minimum values at p and q respectively such that $p^2 = q$, then find the value of m.
- 9. For all real values of x, the minimum value of $\frac{1-x+x^2}{1+x+x^2}$ is a) 0 b) 1 c) 3 d) $\frac{1}{3}$

10.The maximum value of $[x(x-1)+1]^{\frac{1}{3}}, 0 \le x \le 1$ is

a)
$$\left(\frac{1}{3}\right)^{\overline{3}}$$
 b) $\frac{1}{2}$ c) 1 D) 0